
Operational Semantics for MOF Metamodels

Tutorial on M3Actions

Michael Soden,
soden@ikv.de

Department of Computer Science, Humboldt University Berlin
Unter den Linden 6, 10099 Berlin, Germany

Abstract. This tutorial is an introduction to the M3Actions: a frame-
work to support the definition of operational semantics in MOF meta-
models. We give an overview on the ingredients of the framework in-
cluding the extended instantiation concept and the MAction language.
The action semantics language is explained along with a small example
metamodel to show how executable models can be defined and executed.

1 Introduction

Over the last years, new engineering paradigms of model-centric development
or language-oriented programming drew the attention of software engineering
communities. Evolving domain specific engineering manifested a general call
for more efficient software engineering with customized modelling languages ac-
companied by first-class tooling. While the classic approach to mostly textual
language development is rooted in the history of automata theory and parser
technology, newer frameworks are driven by the concept of higher-level, object-
oriented metamodelling. In this context, the M3Actions strives for providing a
framework that supports the definition of executable language definitions based
on MOF metamodels.

Reaching back to previous work at the Humboldt University Berlin on execu-
tion semantics of the SDL language using Abstract State Machines [1], the design
rational of M3Actions addresses the need to have a framework for human read-
able, high-level, but precisely executable definitions of languages. Main aim is
the formal analysis and assessment of executable models by means of simulation
and testing. Its current implementation is based on top of the eclipse model-
ing projects EMF, MDT-OCL and GMF [2] and designed to be an extensible
framework centered around an exectuable metamodelling core.

For the definition of models one can assign the different parts to either the
structure (abstract syntax), static constraints, representation (concrete syntax)
or behaviour (execution semantics) [3]. Within this language definition grid, the
M3Actions framework focusses on structure and behaviour aspects by means of
operational semantics [4] and consists of the following parts:

– A MOF-based metamodelling facility enhanced by explicit instantiation for
the definition of structural aspects of models

– OCL for the definition of static constraints within models
– An action language to define the execution semantics by means of operational

semantics.

The framework comprises an editor for metamodels (with extended instan-
tiation relations), a graphical editor for the action flows and a (meta-)simulator
to execute model instances with the behaviour defined in the metamodel. The
simulator is realized as an interpreter that supports execution, debugging and
execution trace recording for the analysis of executed models. To edit instances
of specific metamodels under design, either the reflective EMF tree-editor or
supplementary plugins for the concrete syntax might be used.

The remainder of this tutorial is structured as follows: section 2 explains the
motivation of exectuable models and M3Actions architecture rationals. After-
wards section 3 gives a first idea how these concepts are applied using the famous
’Hello World’ program, before section 4 dives into a more complex sample to ex-
emplify the execution and instantiation concepts supported by the framework.

2 Executable Metamodels

The nature of model execution is not new: every program can be seen as an
executable model if we consider the program’s code to be a model. Hence, ’exe-
cutable metamodels’ or ’dynamic metamodeling’ are actually misleading terms:
not metamodels are executed, but their instances are. However, the aim of this
terminology is to stress the definition of behaviour within a metamodel in con-
trast to the traditional way of defining execution semantics by a mapping into a
so called semantic domain. Thus, M3Actions and related frameworks1 support
the definition of executable language definitions directly inline in the metamodel
[10][11][12]. For this purpose, the M3Actions framework provides a visual action
language called MActions which is similar to UML Activities/Actions to specify
the operational semantics of models beside the pure structural object-oriented
concepts known from MOF [13].

One of the key points in the architecture is to separate the fixed model
structure as defined by ordinary metamodels from their changing runtime con-
figurations: the runtime model. This separation might be artifical in the first
place, but it helps to classify the different models involved and to distinguish
between changing and non-changing parts. Figure 1 visualizes the (meta-)models
involved in a language definition and their relationships. Beside the abstract syn-
tax that is usually manipulated through an editor that visualizes the model in its
concrete syntax, model execution might require additional runtime information
to be managed, for instance program counters or active state descriptors, data
structures such as stack frames, events, etc. The idea is to clearly separate these
volatile objects from the fixed part of the model through instanceOf 2.

1 e.g. XMF[5], Kermeta[6], GME[7], MetaEdit+[8], AMMA[9]
2 Hence, we usually refer to the metaphor of program and process, where the latter is

an instance of the former

Fig. 1. Architecture overview and meta-layer relationships

Even though the MAction language supports the manipulation of model el-
ements in general, we usually apply changes only to the runtime model3. Con-
ceptually, we consider runtime models as being instances of the models of the
abstract syntax, residing at ’level M0’ of the classical meta-layer stack (cf. figure
1). For this purpose, the M3Actions framework supports an explicit instanceOf
relationship as first-class modelling concept to distinguish between abstract syn-
tax and runtime model(s).

2.1 Instantiation

Giving rise to the meta-muddle, one can define multiple logical meta-layers in
an M3Actions metamodel. Our experience shows that one can draw advantages
from such an explicit instanceOf relationship, especially when defining execution
behaviour with runtime information that supplement the static abstract syntax.
As consequence, however, we have to distinguish physical and logical instantia-
tion in the sense of Atkinson et al[14]. We’ll briefly discuss the concepts in the
following.

Typically, today’s object-oriented languages like Java, C# or C++ support
shallow instantiation: a class can be instantiated directly and resulting objects
are created in memory, receive slots for all (non-static) properties defined in
the class, get initialized, etc. This type of instantiation is referred to as physical
instantiation and normally strictly bound to the type-system of the language
by means of introspection, inheritance and polymorphism. Programmers might
check for type conformance through an ’instanceof’ operator and (rather sel-
dom) query for all instances of a certain type, because the language/execution
envrionment manages this instanceOf relation.

The second type of logical instantiation is orthogonal to the former and
usually not supported by ordinary programming languages. The semantics are
3 any change to the abstract syntax would be rather an ’edit’ operation, model trans-

formation or a self-modifying execution

closer to an association that links together ’objects’ and ’meta-objects’. Both
instantiations share the conceptual circumstance that an object is an instance of
another object. Nevertheless, while physical instantiation defines the structure
(slots for values and links) of its instances, logical instantiation has no effect
on the structure except that this additional ’object-level’ instanceOf relation is
managed by the metamodelling framework.

Fig. 2. InstanceOf extension and application

Figure 2 shows both concepts and their relation: a) shows the instanceOf
association as extension of MOF at ’level M3’. This relation can be set be-
tween classes and associations4 as shown in b). Part c) of the figure shows the
relationship of physical instances and their logical instanceOf. The M3Actions
framework manages this relation by injecting two references to every object:
metaObject and allInstances. Conceptually, they’re extensions to OCL re-
flection, technically they’re added to every object during load and/or creation
time of elements, respectively. There are two considerations to be taken into
account to define the instanceOf semantics precisely: (1) how to distinguish be-
tween physical and logical instantiation and (2) how objects do receive their
logical instanceOf relationship. For (1) the answer is depending on the context:
4 Although Associations have not been implemented so far

the user has to know which instantiation he wants to check. Since in the overall
framework OCL is used to navigate and access element properties, OCL must
be capable of handling both instantiation properties. As one would probably
expect, question (2) is answered at creation time of new objects. Before going
further into the details of the creation of elements, we have to look at the actions
that define the runtime manipulations and return to these questions during the
example in section 4.

2.2 MAction language

Model elements are manipulated with a number of basic actions which make
up the MActions language. The concrete (graphical) syntax as implemented is
borrowed from UML Actions/Activities [15] using activity flows with pins, object
nodes, etc. A purely textual syntax is currently not defined. In the same way
as MOF does for the structural modelling, execution semantics of MActions are
solely defined over MOF and OCL recursively (the later for expressions and
types) by MActions itself5 [13][16].

The MActions provide two specific extensions to specify model behaviour us-
ing actions: MActivities and MOperations. While the former define standalone
behaviour flows without any context, the latter are hooked into classes as op-
erations that have an action-based behaviour definition. Thus, operations have
always a self variable defined, referring to the instance on which the operation
was invoked. The native actions include the following:

MQueryAction executes an OCL query over the model and returns the result
at the output pin. It is parameterized with arbitrary inputs that are available
as local variables in the query expression

MAssignAction manipulates object properties by assigning/adding/removing
values of properties (single and multi-valued)

MCreateAction Instantiates a specified meta-class and returns a new instance
at the output pin. Optionally, it sets the logical instanceOf link

MInvocationAction invokes another MOperation on a given context object
’self’ or an MActivity. Additional black-box or library operations can be
hooked in as extension

MIterateAction iterates a collection as result of an OCL query using an iter-
ator that can be accessed from nested operations

MAtomicGroup groups a set of actions to build more complex behavior which
is semantically atomic. Atomic behaviour is not interrupted in case of mul-
tiple threads

MInputAction Read or import a set of elements from the environment into
the model and return it at the output pin. The execution framework is
responsible of providing an adequate input as defined by the action’s pin
specification

5 the recursive nature of the definition as kind of ”meta-layer fixpoint” gave the frame-
work its name

MOutputAction Output a set of model elements to the environment. The
framework is responsible to process the output, e.g. print or visualize it,
store it to a file, database, etc.

MDecisionNode Decision nodes are used to specify conditional flows. Condi-
tions are expressed as disjoint OCL constraints (multiple outputs are sup-
ported).

Behaviour is always executed in the context of an MThread. Forking of MThreads
is supported by the MInvocationAction. In order to describe the executable se-
mantics of an MActions specification, we will explain the details along with the
examples in section 3 and 4. Having defined the execution semantic of the mod-
els by means of a metamodel comprising abstract syntax, runtime model and
actions, models can be executed by specifying the entry behaviour as input to
the M3Actions interpreter.

3 Hello Meta-World!

Let’s start with one of the simplest executable models: the Hello World program.
Since we don’t need any structure in our metamodel to just say hello to the world,
we do not define any classes but only a standalone MActivity. In terms of UML,
MActivities are classifier behaviours that build a unit of execution (i.e. they’re
not executed in the context of an object and have no self defined). For printing
the string ”Hello MetaWorld!”, we need an action flow as show in figure 3.

Print a string

outputObject

'Hello MetaWorld!'

queryResult

Fig. 3. Hello Meta-World as MAction behaviour

Any MAction flow has to start with an initial node and end at one (or more)
final nodes. The first action in the hello world behaviour is an MQuery action.
This action gets an OCL expression6 and returns the result at the output pin
6 the Essentiel OCL (EOCL) subset is supported (cp. [16])

(here: queryResult). The output pin is of type String and has a multiplicity of
[1..1] (not shown by the visual editor). In this example, the OCL expression is
a constant query and returns always the same string at the output pin. In case
the pin specification would not match the query’s result-type or multiplicity, the
overall behaviour is undefined7.

The second action is an MOutput action that delivers the string to the user.
It has an input pin outputObject : String that specifies the expected objects
to be shown to the environment. The format of presentation is not defined in
the language, but by the executing environment (simulator framework)8. Even
though we use a primitive as pin type, we could also pass any model as output.
However, as one would expect from a programming language, the default is a
simple (stringified) console output.

Before we continue with a larger example that uses structural concepts in
the metamodel, we extend this small example by introducing the MInput action.
Symmetrically to MOutput, this action has an output pin of a certain type that
specifies the expected input objects. Let’s say we want to read the name of the
user in our example and produce the greeting: ”Hello <user-input>”, we could
modify the behaviour as shown in figure 4. The new MInput action ”Read a
string” has a pin name : String at which the input from the environment is
provided.

In the same way as for outputs, the input might be of primitive or complex
type. If the environment does not deliver an input suitable to the pin specifica-
tion, the behaviour is undefined. For example, if we use Integer as pin type, the
environment must guarantee to provide a valid integer value in order to continue
proper execution.

Beside the new input action, the query action has now a ’real’ dynamic
calculation of a concatenated string consisting of the value of variable greet and
the result available at output pin name. Basically, OCL let statements defining
variables and input pins are the same: both define variables accessible in the
subsequent OCL expression. Note that the query will under no circumstances
modify the objects passed in: it’s truely side-effect free!

Furthermore, the gentle reader might have noticed the omission of the input
and output pins of the query action. In general, it is necessary to specify pins
for all passed inputs/outputs of an action. But if we look back to figure 3, we
notice that both pins queryResult and outputObject are redundent, since they
simply constitue a renaming of the reference to the object provided by the query.
Hence, for simplicity reasons, consecutive pins which have the same name, type
and multiplcity can be omitted. This kind of ’syntactic sugar’ is intended for
simplicity and to lower the burden of specifying redundent information.

7 there is one exception to this rule: if the type matches and the output pin is of [0..1]
multiplicity, but the query returns a collection, it is assumed that the collection shall
be flattened to the first element

8 The purpose is define a single environment interface that might be adjusted to
specific needs for the models being defined

Print a string

outputObject

let greet : String = 'Hello ' in greet.concat(name)

Read a string

name

Fig. 4. Greeting with MInput action

4 Meta-layers and Instantiation

This section explains the execution semantics with their relation to the common
structural class modelling concepts of MOF. As shown in the previous section,
the elementary elements for behaviour modelling are object flows, basic action
types and in a pivotal role: OCL. We introduce more advanced actions along with
the small example metamodel that exemplifies multiple meta-layers (shown in
figure 5).

The metamodel consists mainly of a container class MultiLayerModel and
three classes which are in our focus with respect to execution: MetaConcept,
Concept and Instance. As their name implies, each class defines a concept on
a different logical meta-layer. That means, the metamodel describes entities of
a model (MetaConcept), instances of that model (Concept) and instances of the
instances (Instance). Even though this might seem odd at first glance, recall that
for example the UML language has also constructs at (at least) two logical meta-
layers: Classes and Objects9. For M3Actions, we realized the explicit modelling
of this instanceOf relationship and support it in the action language and the
framework (cp. figure 5). For a more detailed discussion on meta-layers and
instantiation please refer to section 2.1.

The purpose of this three layer metamodel is to stress the difference between a
fixed part of the model (usually referred to as the abstract syntax) and its runtime
model changing over execution time. Typically, the abstract syntax part in the

9 Note that the MOF standard itself speaks no longer from the strict 4-layer meta-
model, but from objects and their meta-objects [?]

MetaConcept

name : EString

Concept

execute ()

Instance

value : EString

MultiLayerModel 0..*

0..*

<<instanceOf>>

<<instanceOf>>

metaConcepts

concepts

Fig. 5. Metamodel with three logical meta-layers: MetaConcept, Concept and Instance

metamodel is supported by textual or graphical tools to create, manipulate or
transform these models. In the example metamodel, MetaConcept and Concept
are used to represent the fixed part of the model, hence the containment relations
to the MultiLayerModel class which serves as container for these objects10. Let’s
have a look at an instance of this part of the metamodel as shown in figure 6.

:MultiLayerModel

:MetaConcept

name = "A"

:MetaConcept

name = "B"

:Concept

:Concept

:Concept

:Concept

:Concept

metaConcepts metaConcepts

concepts

Fig. 6. Example instance of the multi-layer metamodel

This model is a physical instance of the metamodel depicted in UML object
notation. Note that the objects are direct instances of the meta-classes and each

10 actually EMP tooling usually requires such a top-level root container (e.g. GMF
canvas, OCL extents for constraint checks, etc.)

object state its meta-class by name. Straightforward, properties such as name or
concepts are slots or links, respectively. Important are the instanceOf relations:
they are handled as links with special semantics (dashed lines with triangle).
We’ll see in a minute how they behave during execution. Note that this model
does not include any instances of meta-class Instance: this part is supposed to
serve as runtime model and we’ll instantiate it dynamically during execution.

Now, let’s define some behaviour in the metamodel to actually execute some
behaviour over the models. First, we define a standalone MActivity Startup to
initiate execution runs. The action flow is shown in figure 7. After the obliga-
tory initial node, the central action is an MIterate action. Similar to predefined
OCL iterators11, the action provides an iterator variable that is assigned to one
value of a collection at a time while executing a set of nested actions. In the
example, the expression concept in MetaLayers::Concept.allInstances()
defines the interator concept over the result of the allInstances() query. Note
that the OCL allInstances operation works over the physical instanceOf re-
lations, not logical ones. For the model in figure 6, this iteration would iterate
over the five instances depicted of class Concept.

Instantiate Concept

meta

instance

instance.value := concept.metaObject.name

concept

execute concept

self

«iterate» concept in MetaLayers::Concept.allInstances()

main

Fig. 7. MActivity Startup

11 cp. [16], section 11.8

The first action Instantiante Concept inside the iteration is an MCreate ac-
tion. In the first place, creation of objects behaves like in other OO languages, i.e.
an object is allocated with slots for all properties of the given class to be instan-
tiated. The (meta-)class to be physically instantiated is given by the output pin’s
type. Additionally, as the object’s class might have an explicit instanceOf rela-
tion being defined, this logical instanceOf link can be set to such an metaObject
during creation time by passing a conforming object via an input pin. Here ’con-
forming’ means that the type of the output pin α and the type of the input pin
β must have either a direct instanceOf relation, or one of the (direct or indi-
rect) supertypes of α must have this relation to β. In our example metamodel,
the input pin of the create action references at runtime the current iterator ob-
ject which is of type Concept. Then it will produce an object of type Instance
and create the logical instanceOf link between the two. As result, the newly
created instance remains a logical instance for the whole object lifetime in the
further execution and exposes this fact via its metaObject reference which can
be navigated later on.

Next in the flow is an assign action which makes use of the metaObject
property of the iterator concept. Naturally, the instanceOf link can also be
set at the fixed models (in the editor) and not established dynamically at
runtime as in the previous create action. Recall from figure 6 that each in-
stance of class Concept really has this fixed logical instanceOf link set to an
instance of class MetaConcept as shown. Now, we can navigate this link and ac-
cess the MetaObject#name attribute of the iterator concept simply by writing:
concept.metaObject.name and assign this value to the attribute value of the
newly created object instance. Note that we’re effectively dealing with all three
(logical) meta-layers in this action: MetaConcept objects (level 1) are accessed
by the metaObject reference from the iterator concept (level 2) and the query
result is assigned to objects of type Instance (level 3).

The third action in the overall iteration is finally an MInvocation action.
Invocations behave like normal OO method calls including polymorphism (vir-
tual method dispatching, late binding). Not shown in the visual editor is the
invocation target, which is Concept#execute. While the current Startup flow
is an MActivity, the invoked operation is an MOperation (subclass of MOF
Operation). This is the second kind of behavioural feature in MActions to de-
fine object level behaviours. Generally, the context of a behaviour is defined by
a pin with the predefined name self. Self can be accessed within the flow from
any action. Therefore, we have to specify a self object as context of the invo-
cation: we use the iterator concept (see input pin in figure 7). If the invoked
operation would declare any in/out parameters, for each parameter an input or
output pin have to be present, respectively. These parameters would be accesible
through object nodes in the invoked operation.

The behaviour flow of execute is depicted in figure 8. The behaviour consists
of a query and a subsequent output. The main purpose of this behaviour is to
demonstrate the handling of the previously created metaObject and its opposite
direction: the logical allInstances. While the (single) meta-object of an instanceOf

print

out

self.allInstances->first().value

Fig. 8. MOperation execute

can be accessed by metaObject, all logical instances of an object can be retrieved
by the allInstances reference. In the OCL query, the current context object is
accessed through the self keyword, followed by a navigation to the first element
of the logical allInstances collection. Note that while the physical instanceOf
relation can be accessed with the OCL operation allInstances() at the class
(e.g. as in the iteration in figure 7), all logical instances are accessed via this
reference that is conceptually available as OCL reflective property at any object
which class has the explicit instanceOf defined. Hence, the result of this query
will be the previously created Instance object which carries the name of its
(logical) meta-meta-object12. Therefore, the output action prints the value A or
B for each ’instance-instance’ of MetaConcept objects which have the respective
name A or B.

4.1 Acknowledgements

We would like to thank our colleagues at the Humboldt University Berlin for
ongoing support and review. The contents of this tutorial is part of the author’s
collaborative work with Hajo Eichler on their Ph.D. thesis.

References

1. Prinz, A.: Formal Semantics for RSDL: Definition and Implementation. PhD
thesis, Humboldt-Universitt zu Berlin (2000)

2. Eclipse Project: (Eclipse Modeling Project (EMP))

12 For simplicity, we create in Startup only one instance and use the first collection
to retrieve it

3. Fischer, J., Holz, E., Prinz, A., Scheidgen, M.: Tool-based language development.
In: Workshop on Integrated-reliability with Telecommunications and UML Lan-
guages. (2004)

4. Plotkin, G.: A structural approach to operational semantics. Technical report,
University of Aarhus, Denmark (1981)

5. Clark, T., Evans, A., Sammut, P., Willans, J.: Applied Metamodeling, A Founda-
tion for Language Driven Development. Xactium (2004)

6. Team, T.: (Triskell Meta-Modelling Kernel. IRISA, INRIA. www.kermeta.org.)
7. Agrawal, A., Karsai, G., Ledeczi, A.: An end-to-end domain-driven software de-

velopment framework. In: OOPSLA ’03: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, New York, NY, USA, ACM Press (2003) 8–15

8. MetaCase: (MetaEdit+. http://www.metacase.com.)
9. Davide Di Ruscio, Frederic Jouault, I.K.J.B.A.P.: Extending amma for support-

ing dynamic semantics specifications of dsls. Technical report, Universite Studi
dell’Aquila (2006)

10. Soden, M., Eichler, H.: An approach to use executable models for testing. In:
Enterprise Modelling and Information Systems Architectures - Concepts and Ap-
plications , Proceedings of the 2nd International Workshop on Enterprise Modelling
and Information Systems Architectures. Volume P-119 of LNI., GI (2007)

11. Scheidgen, M., Fischer, J.: Human comprehensible and machine processable spec-
ifications of operational semantics. (In: ECMDA)

12. Eichler, H., Soden, M., Scheidgen, M.: A semantic meta-modelling framework with
simulation and test integration. In: ECMDA Workshop on Integration of Model
Driven Development and Model Driven Testing, Bilbao. (2006)

13. OMG: Meta Object Facility (MOF) 2.0 Core Specification. Object Management
Group (2003) ptc/03-10-04.

14. Atkinson, C., Kühne, T.: The essence of multilevel metamodeling. In: UML’01:
Proceedings of the 4th International Conference on The Unified Modeling Lan-
guage, Modeling Languages, Concepts, and Tools. LNCS, London, UK, Springer-
Verlag (2001) 19–33

15. OMG: UML 2.0 Superstructure Specification. Object Management Group (2004)
ptc/04-10-02.

16. OMG: OCL 2.0 Specification. Object Management Group (2005) ptc/2005-06-06.

